Coaxial CoMoO4 nanowire arrays with chemically integrated conductive coating for high-performance flexible all-solid-state asymmetric supercapacitors.
نویسندگان
چکیده
Flexible all-solid-state supercapacitors have offered promising applications as novel energy storage devices based on their merits, such as small size, low cost, light weight and high wearability for high-performance portable electronics. However, one major challenge to make flexible all-solid-state supercapacitors depends on the improvement of electrode materials with higher electrical conductivity properties and longer cycling stability. In this article, we put forward a simple strategy to in situ synthesize 1D CoMoO4 nanowires (NWs), using highly conductive CC and an electrically conductive PPy wrapping layer on CoMoO4 NW arrays for high performance electrode materials. The results show that the CoMoO4/PPy hybrid NW electrode exhibits a high areal specific capacitance of ca. 1.34 F cm(-2) at a current density of 2 mA cm(-2), which is remarkably better than the corresponding values for a pure CoMoO4 NW electrode of 0.7 F cm(-2). An excellent cycling performance of nanocomposites of up to 95.2% (ca. 1.12 F cm(-2)) is achieved after 2000 cycles compared to pristine CoMoO4 NWs. In addition, we fabricate flexible all-solid-state ASC which can be cycled reversibly in the voltage range of 0-1.7 V, and exhibits a maximum energy density of 104.7 W h kg(-1) (3.522 mW h cm(-3)), demonstrating great potential for practical applications in flexible energy storage electronics.
منابع مشابه
Assembly of flexible CoMoO4@NiMoO4·xH2O and Fe2O3 electrodes for solid-state asymmetric supercapacitors
In this work, CoMoO4@NiMoO4·xH2O core-shell heterostructure electrode is directly grown on carbon fabric (CF) via a feasible hydrothermal procedure with CoMoO4 nanowires (NWs) as the core and NiMoO4 nanosheets (NSs) as the shell. This core-shell heterostructure could provide fast ion and electron transfer, a large number of active sites, and good strain accommodation. As a result, the CoMoO4@Ni...
متن کاملFlexible, planar-integrated, all-solid-state fiber supercapacitors with an enhanced distributed-capacitance effect.
Flexible and highly efficient energy storage units act as one of the key components in portable electronics. In this work, by planar-integrated assembly of hierarchical ZnCo₂O₄ nanowire arrays/carbon fibers electrodes, a new class of flexible all-solid-state planar-integrated fiber supercapacitors are designed and produced via a low-cost and facile method. The as-fabricated flexible devices exh...
متن کاملHigh Performance All-solid Supercapacitors Based on the Network of Ultralong Manganese dioxide/Polyaniline Coaxial Nanowires.
In recent years, thin, lightweight and flexible solid supercapacitors are of considerable interest as energy storage devices. Here we demonstrated all-solid supercapacitors (SSCs) with high electrochemical properties, low self-discharge characteristics based on manganese dioxide/polyaniline (MNW/PANI) coaxial nanowire networks. The synergistic effect of MnO2/PANI plus the unique coaxial nanostr...
متن کاملHigh performance of a solid-state flexible asymmetric supercapacitor based on graphene films.
Solid-state flexible energy storage devices hold the key to realizing portable and flexible electronic devices. Achieving fully flexible energy storage devices requires that all of the essential components (i.e., electrodes, separator, and electrolyte) with specific electrochemical and interfacial properties are integrated into a single solid-state and mechanically flexible unit. In this study,...
متن کاملHierarchically Structured Co3O4@Pt@MnO2 Nanowire Arrays for High-Performance Supercapacitors
Here we proposed a novel architectural design of a ternary MnO2-based electrode - a hierarchical Co3O4@Pt@MnO2 core-shell-shell structure, where the complemental features of the three key components (a well-defined Co3O4 nanowire array on the conductive Ti substrate, an ultrathin layer of small Pt nanoparticles, and a thin layer of MnO2 nanoflakes) are strategically combined into a single entit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 7 37 شماره
صفحات -
تاریخ انتشار 2015